預應力是錨桿支護中的關鍵參數,對支護效果起著決定性作用。但是,長期以來,由于很多礦區(qū)沒有認識到預應力的重要性,而且錨桿施工機具不能提供較大的預應力,導致我國煤礦錨桿預應力普遍偏低,一般預緊力矩為100-150N.m,預緊力為15-20kN,有的甚至為零,嚴重影響了錨桿支護作用的發(fā)揮。
一、錨桿預應力值的選擇
錨桿預應力設計的原則是控制圍巖不出現明顯的離層、滑動與拉應力區(qū)。實踐證明,如果選擇合理的預應力值,能夠實現對離層與滑動的有效控制。根據國外的經驗,以及國內部分礦區(qū)的試驗數據,結合我國煤礦巷道條件與施工機具,一般可選擇錨桿預緊力為桿體屈服載荷的30-60%。表1列出了不同錨桿的預緊力取值(桿體屈服載荷的50%)??梢姡^桿直徑越大,桿體材質強度越高,要求的預應力值越高。
表1 不同材質與規(guī)格錨桿的預應力值
二、錨桿預應力的影響因素
目前,我國煤礦錨桿預應力主要是通過擰緊錨桿尾部螺母,壓緊托板實現的。錨桿預應力與螺母預緊力矩、螺紋規(guī)格及摩擦系數等因數之間有如下關系:
式中:f1—螺母與錨桿螺紋段間的滑動摩擦系數;
fo—螺母、墊圈端面間滑動摩擦系數;
d2—螺紋中徑,mm;
d0—墊片內徑,mm;
D1—螺母端部有效接觸面外接圓直徑,mm;
s—螺紋導程,mm,
s=nt
n—螺紋頭數;
t—螺距,mm;
M—螺母預緊力矩,kN·m;
P0—錨桿預緊力,kN。
若令:
則錨桿預緊力與螺母預緊力矩之間的關系可表示為:
P0=kM
可見,錨桿預緊力與螺母預緊力矩成正比,同時取決于系數k。影響k值大小的關鍵因素為:一是螺母與錨桿螺紋段間的摩擦系數f1,f1越大,k值越??;二是螺母、墊圈端面間的摩擦系數f0,f0越小,k值越大;三是錨桿直徑,錨桿越粗,k值越小。
三、錨桿預應力的實驗室與井下試驗
1.實驗室試驗
某研究團隊在實驗室選取螺紋公稱直徑為M18、M20、M22、M24、M27等五種型號的標準螺栓,進行不同端面減摩條件下,錨桿預緊力矩與預緊力的對應關系試驗。減摩條件分為:不使用減摩墊片,減摩墊片分別為聚四氟乙烯、1010尼龍、改性1010尼龍及高密度聚乙烯。
圖1、圖2分別為M20、M24螺栓預緊力矩與預緊力的對應關系曲線。分析實驗結果,可以得出以下結論:
圖1 M20錨桿預緊力矩與預緊力的對應關系曲線
圖中:200-不使用減摩墊片;202-1010尼龍;203-改性1010尼龍;204-高密度聚乙烯
圖2 M24 錨桿預緊力矩與預緊力的對應關系曲線
圖中:240-不使用減摩墊片;242-1010尼龍;243-改性1010尼龍;244-高密度聚乙烯
(1)錨桿預緊力矩與預緊力基本成線性關系,錨桿預緊力隨預緊力矩增加而增大。
(2)比例系數k反映了錨桿預緊力矩與預緊力的對應關系,k值越大,減摩效果越好,相同的預緊力矩對應的錨桿預緊力越大。
(3)在相同預緊力矩下,減摩墊片可使錨桿預緊力顯著提高。其中,1010尼龍墊片的減摩效果最為明顯。
(4)聚四氟乙烯和改性1010尼龍墊片的壓延性較差,一般預緊力矩達到200~300N·m時即被螺母擠出并發(fā)生斷裂,減摩效果降低。1010尼龍墊片的壓延性好,在螺母擰緊的過程中被擠壓成連續(xù)的薄片,最后形成碗狀,始終起到減摩作用。
2.井下實測
井下對φ25mm的錨桿預緊力進行了測試。測試條件為:錨桿長度2.4m,錨固長度1200mm,螺紋規(guī)格為M27;托板為高強度拱形托板,配球形墊圈;螺母與配球形墊圈之間加1010尼龍減摩墊片。托板下面安裝錨桿測力計,測定錨桿軸向力。
采用氣動扳手對錨桿螺母施加預緊力,預緊力矩為300~700N·m,從錨桿測力計上測出相應的預緊力。測試數據及與實驗室測試數據對比見表2。從表中可看出以下幾點:
表2 實驗室與井下實測錨桿預緊力對比(φ25mm錨桿)
(1)井下錨桿預緊力矩在300N·m時,錨桿預緊力達到50kN。隨著錨桿力矩增加,預緊力逐漸增大。但當錨桿力矩超過400 N·m時,預緊力增加變得緩慢,再增加錨桿力矩,獲得的預緊力增量很小。
(2)實驗室錨桿預緊力測試數據表明,隨著錨桿預緊力矩增加,預緊力基本線性增大。因此,隨著錨桿力矩增加,實驗室數據與井下實測數據差值逐步增大。當錨桿力矩為700N·m時,預緊力差值高達108kN??梢姡^桿預緊力矩越大,預緊力差值越大。
(3)導致出現上述現象的主要原因之一是:實驗室采用的錨桿螺紋為標準螺栓,加工精度高,表面光滑,螺母與螺紋間的摩擦力小,因此k值大,預緊力大;而井下使用的錨桿,采用滾絲加工工藝,加工精度低,螺母與螺紋間的摩擦力大,因此k值小,預緊力小。這種現象在錨桿預緊力矩大的情況下更為突出。
(4)另外一個重要原因是,實驗室試驗條件與井下有較大差別。如實驗室錨桿托板置于比較平滑、剛性的試驗臺上,錨桿受力均勻;而井下巷道頂板一般比較粗糙,甚至松軟破碎、凹凸不平,導致錨桿受力不均勻。
四、提高錨桿預應力的技術措施
提高錨桿預應力的技術措施分為兩方面:其一是提高螺母預緊力矩M;其二是提高錨桿預緊力與螺母預緊力矩的轉換系數k值。
1.提高螺母預緊力矩M
螺母預緊力矩是由錨桿安裝機具的輸出扭矩決定的,是影響錨桿預緊力的關鍵因素。美國、澳大利亞等采煤技術先進的國家,普遍采用錨桿臺車、掘錨聯合機組施工錨桿。一方面,錨桿鉆機的輸出扭矩很大,有的超過500N·m,能夠保證錨桿的高預緊力;另一方面,錨桿臺車對頂板的頂推力很大,能夠達到400kN以上。頂推力對巷道頂板提供一個很高的壓緊力,在錨桿安裝以后,該力通過托板傳給錨桿,增加預緊力。
國內普遍采用單體錨桿鉆機鉆裝錨桿,這種錨桿鉆機輸出扭矩一般為100-150N·m,頂推力在10kN左右,無法實現錨桿的高預緊力。
為了大幅度提高錨桿的預緊力矩,措施之一是采用專門的高扭矩螺母擰緊設備(如氣動扳機),但是給錨桿安裝增加了一道工序;其二是在適宜的條件下,引進、開發(fā)錨桿臺車和掘錨聯合機組,保證錨桿快速、高質量安裝。
2.提高錨桿預緊力與螺母預緊力矩的轉換系數k
提高錨桿預緊力與螺母預緊力矩轉換系數k值的主要措施是:降低螺母與錨桿螺紋段間的摩擦系數f1;減小螺母、墊圈端面間的摩擦系數f0。
降低f1的措施包括:提高螺紋加工精度等級,減少摩擦阻力和摩擦扭矩;采用油脂對螺紋部進行潤滑,減少摩擦阻力。因此,改善錨桿螺紋加工工藝與設備,提高錨桿螺紋加工精度,對提高錨桿預應力和支護效果具有重要意義。
減小f0的措施是采用高效減摩副,減少螺母、墊圈和托盤之間的摩擦阻力和摩擦扭矩。上述試驗表明,在螺母與托板之間加減摩墊片,可減少摩擦阻力,而且減摩墊片的材質起關鍵作用。井下使用時應選擇合適的減摩墊片,實現高效減摩,顯著提高錨桿預緊力。
轉化果平臺咨詢電話:4001817969